Chapter 10 in the $9^{\text {th }}$ Edition Chapter 9 in the $8^{\text {the }}$ Edition

Polyprotic Acid-Base Equilibria

Overview

10-1 Diprotic Acids and Bases
10-2 Diprotic Buffers
10-3 Polyprotic Acids and Bases
10-4 Which Is the Principal Species?
10-5 Fractional Composition Equations
10-6 Isoelectric and Isoionic pH

- Solutions of weak acids and bases

Example:

Propanoic acid $\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}\right.$, which we simplify as HPr$)$ is a carboxylic acid whose salts are used to retard mold growth in food products. What is the $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$of 0.10 M HPr $\left(K_{\mathrm{a}}=1.3 \times 10^{-5}\right)$?

$$
\mathrm{HPr}(a q)+\mathrm{H}_{2} \mathrm{O}\left(\eta=\mathrm{H}_{3} \mathrm{O}^{+}(a q)+\operatorname{Pr}^{-}(a q)\right.
$$

$$
K_{\mathrm{a}}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{Pr}^{-}\right]}{[\mathrm{HPr}]}
$$

Concentration (M)	$\mathrm{HPr}(a q)+\mathrm{H}_{2} \mathrm{O}(\Lambda) \rightleftharpoons$	$\mathrm{H}_{3} \mathrm{O}^{+}(a q)+\mathrm{Pr}^{-}(a q)$		
Initial	0.10	-	0	0
Change	$-x$	-	$+x$	$+x$
Equilibrium	$0.10-x$	-	x	x

Since K_{a} is small, we will assume that $x \ll 0.10$ and $[\mathrm{HPr}] \approx 0.10 \mathrm{M}$.
$K_{\mathrm{a}}=1.3 \times 10^{-5}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{Pr}^{-}\right]}{[\mathrm{HPr}]}=\frac{x^{2}}{0.10}$
$x=\sqrt{(0.10)\left(1.3 \times 10^{-5}\right)}=1.1 \times 10^{-3} M=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \quad \mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=2.96$
Check: $[\mathrm{HPr}]_{\text {diss }}=\frac{1.1 \times 10^{-3} M}{0.10 M} \times 100=1.1 \%(<5 \%$; assumption is justified. $)$

Error Introduced by Assuming $\mathrm{H}_{3} \mathrm{O}^{+}$Concentration Is Small Relative to c_{HA} in Equation 9-16

$\boldsymbol{K}_{\mathrm{a}}$	$\boldsymbol{c}_{\mathrm{HA}}$	$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$Using Assumption	$\frac{\boldsymbol{c}_{\mathrm{HA}}}{\boldsymbol{K}_{\mathrm{a}}}$	$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$Using More Exact Equation	Percent Error
1.00×10^{-2}	1.00×10^{-3}	3.16×10^{-3}	10^{-1}	0.92×10^{-3}	244
	1.00×10^{-2}	1.00×10^{-2}	10^{0}	0.62×10^{-2}	61
1.00×10^{-4}	1.00×10^{-1}	3.16×10^{-2}	10^{1}	2.70×10^{-2}	17
	1.00×10^{-4}	1.00×10^{-4}	10^{0}	0.62×10^{-4}	61
	1.00×10^{-3}	3.16×10^{-4}	10^{1}	2.70×10^{-4}	17
	1.00×10^{-2}	1.00×10^{-3}	10^{2}	0.95×10^{-3}	5.3
	1.00×10^{-1}	3.16×10^{-3}	10^{3}	3.11×10^{-3}	1.6
1.00×10^{-6}	1.00×10^{-5}	3.16×10^{-6}	10^{1}	2.70×10^{-6}	17
	1.00×10^{-4}	1.00×10^{-5}	10^{2}	0.95×10^{-5}	5.3
	1.00×10^{-3}	3.16×10^{-5}	10^{3}	3.11×10^{-5}	1.6
	1.00×10^{-2}	1.00×10^{-4}	10^{4}	9.95×10^{-5}	0.5
	1.00×10^{-1}	3.16×10^{-4}	10^{5}	3.16×10^{-4}	0.0

Relative error resulting from the assumption that $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \ll c_{H A}$

10-1: Diprotic Acids and Bases

- Polyprotic acids and bases are those that can donate or accept more than one proton.
- Diprotic acids and bases therefore can either donate or accept two protons.

Types of polyprotic acids

1. $\mathbf{H}_{2} \mathbf{B}^{+}$, Amino acids, Example: Alanine $-\mathrm{H}_{2} \mathrm{~A}^{+}$

Neutrally charged acids
2. $\mathrm{H}_{2} \mathrm{~A}$ Example: $\mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{H}_{2} \mathrm{CO}_{3}, \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$
3. $\mathrm{H}_{3} \mathrm{~A}$ Example: $\mathrm{H}_{3} \mathrm{PO}_{4}$

10-1: Diprotic Acids and Bases

- A common class of diprotic acids are amino acids, which are the building blocks of proteins.
- They have an acidic carboxylic acid group, a basic amino group, and a variable substituent designated R.
- The carboxyl group is a stronger acid than the ammonium group, so the nonionized form rearranges spontaneously to the zwitterion, which has both positive and negative sites.

Amino Acid

Substituent

Amino Acid

$$
\mathrm{p} K_{\mathrm{a}} \sim 2.5
$$

10-1: Diprotic Acids and Bases

[^0]souncz: A. E. Martell and R. L. Motckaitis, NIST Dutahase 46 (Gaithershurg, MD: National Institute of Standand and Technology, 2001).

10-1: Diprotic Acids and Bases

acid
amphiprotic
base
$\mathrm{H}_{3} \stackrel{+}{\mathrm{N}} \mathrm{CHCO}_{2} \mathrm{H} \stackrel{p K_{\mathrm{a} 1}=2.328}{\rightleftharpoons} \mathrm{H}_{3} \stackrel{+}{\mathrm{N} C \mathrm{CHCO}_{2}^{-}} \stackrel{\mathrm{p} K_{\mathrm{a} 2}=9.744}{\rightleftharpoons} \mathrm{H}_{2} \mathrm{NCHCO}_{2}^{-}$

Diprotic Acid: Consider the Leucine System

$\mathbf{H}_{2} \mathbf{L}^{+}+\mathrm{H}_{2} \mathrm{O} \rightleftarrows \mathrm{H}_{3} \mathrm{O}^{+}+\mathbf{H L} \quad \mathrm{K}_{\mathrm{a} 1}=4.70 \times 10^{-3}$
$\mathbf{H L}+\mathrm{H}_{2} \mathrm{O} \rightleftarrows \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{L}^{-} \quad \mathrm{K}_{\mathrm{a} 2}=1.80 \times 10^{-10}$

HL is a Z witterion.

10-2: Diprotic Buffers

Calculate the pH of the following 0.050 M aqueous solutions:

1. Leucine hydrochloride $\mathrm{H}_{2} \mathrm{~L}^{+}$
2. Sodium leucinate \mathbf{L}^{-}
3. Leucine

HL
$\mathrm{p} K_{\mathrm{a}}{ }^{\prime} \mathrm{s}=2.328$ and 9.744
(1) Estimate answer
(2) Calculate it!

10-2: Diprotic Buffers

1. Calculating the pH of weak diprotic acids $\left(\mathrm{H}_{2} \mathrm{~L}^{+}\right)$

$$
\mathrm{H}_{2} \mathrm{LCl} \rightarrow \mathrm{H}_{2} \mathrm{~L}^{+}+\mathrm{Cl}^{-}
$$

- The weak acid $\mathrm{H}_{2} \mathrm{~L}^{+}$dissociates only a little and the even weaker acid HL dissociates hardly at all.
- Treat as a monoprotic acid.
- For the reaction $\mathrm{H}_{2} \mathrm{~L}^{+} \rightleftharpoons \mathrm{H}^{+}+\mathrm{HL}$, we set up and solve the equation

$$
\frac{\left[\mathrm{H}^{+}\right][\mathrm{HL}]}{\left[\mathrm{H}_{2} \mathrm{~L}^{+}\right]}=\frac{x^{2}}{\mathrm{~F}-x}=\mathrm{K}_{\mathrm{a} 1}
$$

where $\left[\mathrm{H}^{+}\right]=[\mathrm{HL}]=x$, and $\left[\mathrm{H}_{2} \mathrm{~L}^{+}\right]=\mathrm{F}-x$.

10-2: Diprotic Buffers

1. Calculating the pH of weak diprotic acids $\left(\mathrm{H}_{2} \mathrm{~L}^{+}\right)$

$$
\mathrm{H}_{2} \mathrm{~L}^{+} \rightleftharpoons \mathrm{H}^{+}+\mathrm{HL}, \quad \mathrm{p} K_{\mathrm{a} 1}=2.328\left(\mathrm{~K}_{\mathrm{a} 1} \geq 100 \mathrm{~K}_{\mathrm{a} 2}\right)
$$

We estimate the pH to be less than 2.328.

$$
\begin{aligned}
& \qquad \frac{\left[\mathrm{H}^{+}\right][\mathrm{HL}]}{\left[\mathrm{H}_{2} \mathrm{~L}^{+}\right]}=\frac{x^{2}}{\mathrm{~F}-x}=\mathrm{K}_{\mathrm{a} 1} \\
& \frac{x^{2}}{0.050 \mathrm{M}-x}=10^{-2.328}=4.70 \times 10^{-3} \quad \text { (solve using quadratic equation) } \\
& \mathrm{x}=1.32 \times 10^{-2} \mathrm{M} \\
& \mathrm{pH}=1.88
\end{aligned}
$$

10-2: Diprotic Buffers

2. Sodium leucinate (L^{-})

$$
\begin{array}{ll}
\mathbf{L}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftarrows \mathbf{H L}+\mathrm{OH}^{-} & \mathrm{K}_{\mathrm{b} 1}=\frac{\mathrm{K}_{\mathrm{w}}}{K_{\mathrm{an}}}=5.55 \times 10^{-5} \\
\mathbf{H L}+\mathrm{H}_{2} \mathrm{O} \rightleftarrows \mathbf{H}_{\mathbf{2}} \mathbf{L}^{+}+\mathrm{OH}^{-} & \mathrm{K}_{\mathrm{b} 2}=\frac{\mathrm{K}_{\mathrm{w}}}{K_{\mathrm{at1}}}=2.13 \times 10^{-12}
\end{array}
$$

10-2: Diprotic Buffers

2. Calculating the pH of weak diprotic bases (L^{-})

- The weak base L- ionizes by hydrolysis only a little and the even weaker base HL ionizes hardly at all.
- Therefore, treat L^{-}as a monoprotic base.
- For the reaction $\mathrm{L}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{HL}+\mathrm{OH}^{-}$, we set up and solve the equation

$$
\frac{[\mathrm{HL}]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{L}^{-}\right]}=\frac{x^{2}}{\mathrm{~F}-x}=\mathrm{K}_{\mathrm{b} 1}
$$

where $\left[\mathrm{OH}^{-}\right]=[\mathrm{HL}]=x$, and $\left[\mathrm{L}^{-}\right]=\mathrm{F}-x$.

10-2: Diprotic Buffers

What is the pH of an aqueous 0.050 M sodium leucinate solution? $\quad \mathrm{NaL} \rightarrow \mathrm{Na}^{+}+\mathrm{L}^{-}$

$$
\mathrm{L}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{HL}+\mathrm{OH}^{-}, \quad \mathrm{K}_{\mathrm{b} 1}=5.55 \times 10^{-5}\left(\mathrm{~K}_{\mathrm{b} 1} \geq 100 \mathrm{~K}_{\mathrm{b} 2}\right)
$$

$$
\frac{\left[\mathrm{OH}^{-}\right][\mathrm{HL}]}{\left[\mathrm{L}^{-}\right]}=\frac{x^{2}}{\mathrm{~F}-x}=\mathrm{K}_{\mathrm{b} 1}
$$

$$
\frac{x^{2}}{0.050 \mathrm{M}-x}=5.55 \times 10^{-5} \quad \text { (solve using quadratic equation) }
$$

$x=1.6_{4} \times 10^{-3} \mathrm{M}=\left[\mathrm{OH}^{-}\right]$
$\mathrm{pOH}=2.78 ; \quad \mathrm{pH}=14.00-\mathrm{pOH} ; \mathrm{pH}=11.21$

10-2: Diprotic Buffers

A molecule that can both donate and accept a proton is said to be amphiprotic.

10-2: Diprotic Buffers

Using the systematic treatment of equilibrium, an equation for calculating the $\left[\mathrm{H}^{+}\right]$of amphiprotics can be derived (see text).

$$
\left[\mathrm{H}^{+}\right]=\sqrt{\frac{\mathrm{K}_{\mathrm{a} 1} \mathrm{~K}_{\mathrm{a} 2} \mathrm{~F}+\mathrm{K}_{\mathrm{a} 1} \mathrm{~K}_{\mathrm{w}}}{\mathrm{~K}_{\mathrm{a} 1}+\mathrm{F}}}
$$

$$
\mathrm{pH} \sim 1 / 2\left(\mathrm{p} K_{\mathrm{a} 1}+\mathrm{p} K_{\mathrm{a} 2}\right)
$$

10-2: Diprotic Buffers

What is the pH of a 0.05 M leucine (HL) solution?

$$
\left[\mathbf{H}^{+}\right]=\sqrt{\frac{\left(4.7 \times 10^{-3}\right)\left(1.8 \times 10^{-10}\right)(0.050)+\left(4.7 \times 10^{-3}\right)\left(1.0 \times 10^{-14}\right)}{4.7 \times 10^{-3}+0.050}}=8.7_{9} \times 10^{-7} \mathrm{M}
$$

$$
\mathrm{pH}=-\log \left(8.79 \times 10^{-7} \mathrm{M}\right)=6.06
$$

$$
\mathrm{pH} \sim 1 / 2\left(\mathrm{p} K_{\mathrm{a} 1}+\mathrm{p} K_{\mathrm{a} 2}\right) \sim 1 / 2(2.328+9.744) \sim 6.04
$$

Calculating pH

$\begin{gathered} \mathrm{H}_{2} \mathrm{~L}^{+} \text {or } \mathrm{H}_{2} \mathrm{~A} \\ \mathrm{H}_{2} \mathrm{~A}+\mathrm{HA}^{-}\left(\mathrm{H}_{2} \mathrm{~L}^{+}+\mathrm{HL}\right) \\ \text { and } \mathrm{K}_{\mathrm{a} 1} \geq 100 \mathrm{~K}_{\mathrm{a} 2} \\ \mathrm{~L}^{-}\left(\mathrm{K}_{\mathrm{b} 1} \geq 100 \mathrm{~K}_{\mathrm{b} 2}\right) \end{gathered}$	monoprotic acid Monoprotic base hydrolysis
HL or HA	$\begin{aligned} & {\left[\mathrm{H}^{+}\right]=\sqrt{\frac{\mathrm{K}_{\mathrm{a} 1} \mathrm{~K}_{\mathrm{a}} \mathrm{~F}+\mathrm{K}_{\mathrm{a}} \mathrm{~K}_{\mathrm{w}}}{\mathrm{~K}_{\mathrm{a} 1}+\mathrm{F}}}} \\ & \mathrm{pH} \sim 1 / 2\left(\mathrm{p} K_{\mathrm{a} 1}+\mathrm{p} K_{\mathrm{a} 2}\right) \end{aligned}$
$\begin{gathered} \mathrm{HA}^{-}+\mathrm{A}^{2-} \\ \mathrm{K}_{\mathrm{a} 1} \geq 100 \mathrm{~K}_{\mathrm{a} 2} \end{gathered}$	The pH is calculated using $\mathrm{K}_{\mathrm{a} 2}$

- Solutions of Polyprotic acids

$$
\begin{array}{ll}
\mathrm{H}_{2} \mathrm{~A} \leftrightarrow \mathrm{H}^{+}+\mathrm{HA}^{-} & \mathrm{K}_{1}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{HA}^{-}\right]}{\left[\mathrm{H}_{2} \mathrm{~A}\right]} \\
\mathrm{HA}^{-} \leftrightarrow \mathrm{H}^{+}+\mathrm{A}^{2-} & \mathrm{K}_{2}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{A}^{-}\right]}{\left[\mathrm{HA}^{-}\right]}
\end{array}
$$

1. A solution containing $\mathrm{H}_{2} \mathrm{~A}$, or $\mathrm{H}_{2} \mathrm{~A}+\mathrm{HA}^{-}$

If K_{1} is a hundred times or so greater than K_{2}, the second ionization constant will have very little effect and can be ignored. The pH of the solution is calculated from K_{1} expression.
2. A solution containing HA- : Here both ionization affect the composition of the solution and must be considered.

$$
\mathrm{pH}=\left(\mathrm{pK}_{1}+\mathrm{pK}_{2}\right) / 2
$$

3. A solution containing $\mathrm{HA}^{-}+\mathrm{A}^{2-}$: If $\mathrm{K}_{1} 100$ times or more greater than K_{2}, there will be very little $\mathrm{H}_{2} \mathrm{~A}$ in the solution at equilibrium and the first ionization constant need not be used. The pH is calculated using K_{2}.
4. Example: Calculate the pH of a 0.15 M solution of malonic acid, $\mathrm{CH}_{2}(\mathrm{COOH})_{2}$. The ionization constants for malonic acids are, $\mathrm{K}_{\mathrm{a} 1}=1.40 \times 10^{-3}$, and $\mathrm{K}_{\mathrm{a} 2}=2.2 \times 10^{-6}$.

$$
\begin{aligned}
\mathrm{K}_{\mathrm{a} 1} & =\frac{\left[\mathrm{H}^{+}\right][\mathrm{HA}-]}{\left[\mathrm{H}_{2} \mathrm{~A}\right]} \\
\mathrm{K}_{\mathrm{a} 1} & =\frac{\left[\mathrm{H}^{+}\right]^{2}}{0.15-\left[\mathrm{H}^{+}\right]}
\end{aligned}
$$

Solving this equation by the quadratic formula:

$$
\begin{gathered}
{\left[\mathrm{H}^{+}\right]=1.38 \mathrm{X} 10^{-2} \mathrm{M}} \\
\mathrm{pH}=\mathbf{1 . 8 6}
\end{gathered}
$$

2. Example: Calculate the pH of a solution of sodium hydrogen malonate. The ionization constants for malonic acid are $\mathrm{pK}_{\mathrm{a} 1}=$ $2.85, \mathrm{pK}_{\mathrm{a} 2}=5.66$
$\mathrm{pH}=(2.85+5.66) / 2=4.26$
3. Example: Calculate the pH of a solution having, at equilibrium a hydrogen malonate ion (HA^{-}) concentration of 0.15 M and a malonate ion A^{-2} concentration of 0.05 M .

$$
\mathrm{K}_{\mathrm{a} 2}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{A}^{2-}\right]}{\left[\mathrm{HA}^{-}\right]} \quad 2.2 \times 10^{-6}=\frac{\left[\mathrm{H}^{+}\right](0.05)}{(0.15)}
$$

$\mathrm{pH}=5.18$

10-2: Diprotic Buffers

Calculate the pH of the following 0.10 M aqueous solutions:

1. Alanine chloride
$\mathrm{H}_{2} \mathbf{A}^{+}$
HA
2. Sodium alanate
A^{-}
$\mathrm{p} K_{\mathrm{a}}^{\prime} \mathrm{s}=2.34$ and 9.87
(1) Estimate answer
(2) Calculate it!

Calculate the pH of the following 0.10 M aqueous solutions:

Name	Form	Strategy	Calculated $\mathbf{p H}$
Alanine chloride	$\mathrm{H}_{2} \mathbf{A}^{+}$	Monoprotic acid	1.71
Alanine	HA	Amphiprotic	6.11
Sodium alanate	\mathbf{A}^{-}	Monoprotic base	11.44

10-2: Diprotic Buffers

Describe how you would calculate the pH of the following 0.10 M aqueous solutions:

- sodium monohydrogen phosphate: $\mathrm{Na}_{2} \mathrm{HPO}_{4}$
- glycine hydrochloride: $\mathrm{H}_{2} \mathrm{G}^{+}$. Cl^{-}
- citric acid:

- trisodium citrate:

- potassium hydrogen phthalate, (KHP):

10-2: Diprotic Buffers

Describe how you would calculate the pH of the following 0.10 M aqueous solutions:

Solution:

Chemical Formula	Acid or base form	Strategy
$\mathrm{Na}_{2} \mathrm{HPO}_{4}$	$\mathrm{HPO}_{4}{ }^{2-}$	amphiprotic, $\mathrm{K}_{\mathrm{a} 2}, \mathrm{~K}_{\mathrm{a} 3}$
$\mathrm{H}_{2} \mathrm{GCl}$ or $\mathrm{HG} \cdot \mathrm{HCl}$	$\mathrm{H}_{2} \mathrm{G}^{+}$	monoprotic acid, $\mathrm{K}_{\mathrm{a} 1}$
$\mathrm{H}_{3} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{7}$	$\mathrm{H}_{3} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{7}$	monoprotic acid, $\mathrm{K}_{\mathrm{a} 1}$
$\mathrm{Na}_{3} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{7}$	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{7}{ }^{3-}$	monoprotic base, $\mathrm{K}_{\mathrm{b} 1}$
$\mathrm{KHC}_{8} \mathrm{H}_{4} \mathrm{O}_{4}$	$\mathrm{HC}_{8} \mathrm{H}_{4} \mathrm{O}_{4}{ }^{-}$	amphiprotic, $\mathrm{K}_{\mathrm{a} 1}, \mathrm{~K}_{\mathrm{a} 2}$

10-2: Diprotic Buffers

- A buffer made from a diprotic (or polyprotic) acid is treated in the same way as a buffer made from a monoprotic acid.
- For the acid $\mathrm{H}_{2} \mathrm{~A}$, we can write two Henderson-Hasselbalch equations, both of which are always true.
- If we know $\left[\mathrm{H}_{2} \mathrm{~A}\right]$ and $[\mathrm{HA}]$, then use the $\mathrm{p} K_{1}$ equation. If we know $\left[\mathrm{HA}^{-}\right]$and $\left[\mathrm{A}^{2}\right]$, use the $\mathrm{p} K_{2}$ equation.

$$
\begin{gathered}
\mathrm{H}_{2} \mathrm{~A} \rightleftarrows \mathrm{HA}^{-}+\mathrm{H}^{+} \quad \mathrm{p} K_{1} \\
\mathrm{HA} \rightleftarrows \mathrm{~A}^{2-}+\mathrm{H}^{+} \quad \mathrm{p} K_{2} \\
\mathrm{pH}= \\
\mathrm{p} K_{1} \pm \log \frac{\left[\mathrm{HA}^{-}\right]}{\left[\mathrm{H}_{2} \mathrm{~A}\right]} \quad \mathrm{pH}=\mathrm{p} K_{2} \pm \log \frac{\left[\mathrm{A}^{2-}\right]}{\left[\mathrm{HA}^{-}\right]}
\end{gathered}
$$

10-2: Diprotic Buffers

Example: A Diprotic Buffer System

- Find the pH of a solution prepared by dissolving 1.00 g of potassium hydrogen phthalate and 1.20 g of disodium phthalate in 50.0 mL of water.

EXAMPLE A Diprotic Buffer System

Find the pH of a solution prepared by dissolving 1.00 g of potassium hydrogen phthalate and 1.20 g of disodium phthalate in 50.0 mL of water.

Solution Monohydrogen phthalate and phthalate were shown in the preceding example. The formula masses are $\mathrm{KHP}=\mathrm{C}_{8} \mathrm{H}_{5} \mathrm{O}_{4} \mathrm{~K}=204.221$ and $\mathrm{Na}_{2} \mathrm{P}=\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{O}_{4} \mathrm{Na}_{2}=210.094$. We know $\left[\mathrm{HP}^{-}\right]$and $\left[\mathrm{P}^{2-}\right.$, so we use the $\mathrm{p} K_{2}$ Henderson-Hasselbalch equation to find the pH :

$$
\mathrm{pH}=\mathrm{p} K_{2}+\log \frac{\left[\mathrm{P}^{2-}\right]}{\left[\mathrm{HP}^{-}\right]}=5.408+\log \frac{(1.20 \mathrm{~g}) /(210.094 \mathrm{~g} / \mathrm{mol})}{(1.00 \mathrm{~g}) /(204.221 \mathrm{~g} / \mathrm{mol})}=5.47
$$

K_{2} is the acid dissociation constant of $\mathrm{HP}{ }^{-}$, which appears in the denominator of the log term. Notice that the volume of solution was not used to answer the question.

TEST YOURSELF Find the pH with $1.50 \mathrm{~g} \mathrm{Na}_{2} \mathrm{P}$ instead of 1.20 g . (Answer: 5.57)

10-3: Polyprotic Acids and Bases

Example: A diprotic System

EXAMPLE Preparing a Buffer in a Diprotic System

How many milliliters of 0.800 M KOH should be added to 3.38 g of oxalic acid to give a pH of 4.40 when diluted to 500 mL ?

$$
\begin{aligned}
& \mathrm{D} K_{1}-1.250 \\
& \mathrm{D} K_{2}=4.266
\end{aligned}
$$

Oxalic acid
Formula mass - 90.035
Solution The desired pH is above $\mathrm{p} K_{2}$. We know that a $1: 1$ mole ratio of $\mathrm{HOx}{ }^{-}$: Ox^{2-} would have $\mathrm{pH}=\mathrm{p} K_{2}=4.266$. If the pH is to be 4.40 , there must be more $\mathrm{Ox}{ }^{2-}$ than HOx^{-}present. We must add enough base to convert all $\mathrm{H} \quad{ }_{2} \mathrm{Ox}$ into $\mathrm{HOx}{ }^{-}$, plus enough additional base to convert the right amount of HOx^{-}into Ox^{2-}.

$$
\begin{aligned}
& \mathrm{H}_{2} \mathrm{Ox}+\mathrm{OH}^{-} \rightarrow \underset{\substack{\uparrow \\
\mathrm{H}=} \frac{1}{2}\left(\mathrm{D} K_{1}+\mathrm{p} K_{2}\right)=2.76}{\mathrm{HOx}^{-}}+\mathrm{H}_{2} \mathrm{O} \\
& \underset{\text { A } 1: 1 \text { mixture would have }}{\mathrm{HOx}^{-}+\mathrm{OH}^{-} \rightarrow} \mathrm{Ox}^{2-}+\mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

10-3: Dolvprotic Acids and Bases

Example: A diprotic System

In 3.38 g of $\mathrm{H}_{2} \mathrm{Ox}$, there are 0.0375_{4} mol. The volume of 0.800 M KOH needed to react with this much $\mathrm{H}_{2} \mathrm{Ox}$ to make HOx^{-}is $\left(0.0375_{4} \mathrm{~mol}\right) /(0.800 \mathrm{M})=46.9_{3} \mathrm{~mL}$.

To produce a pH of 4.40 requires an additional $x \mathrm{~mol}$ of OH^{-}:

	HOx^{-}	+OH	-	$\rightarrow \mathrm{Ox}$	${ }^{2-}$
Initial moles	0.0375_{4}		x		-
Final moles	$0.0375_{4}-x$	-		x	

$$
\begin{gathered}
\mathrm{pH}=\mathrm{pK}_{2}+\log \frac{\left[\mathrm{Ox}^{2-}\right]}{\left[\mathrm{HOx}^{-}\right]} \\
4.40=4.266+\log \frac{x}{0.0375_{4}-x} \Rightarrow x=0.0216_{6} \mathrm{~mol}
\end{gathered}
$$

The volume of KOH needed to deliver 0.0216_{6} mole is $\left(0.0216_{4} \mathrm{~mol}\right) /(0.800 \mathrm{M})=27.05 \mathrm{~mL}$. The total volume of KOH needed to bring the pH to 4.40 is $46.9_{3}+27.0_{5}=73.9 \mathrm{gL}$.

TEST YOURSELF What volume of KOH would bring the pH to 4.50 ? (Answer: 76.56 mL)

10-4: Which Is the Principal Species?

What is the principal form of benzoic acid ($\mathrm{p} K_{\mathrm{a}} 4.20$) at pH 8 ?

From the Henderson-Hasselbalch equation:
$\mathrm{pH}=\mathrm{p} K_{\mathrm{a}} \pm \log \frac{\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]} \quad \mathrm{pH}=4.20 \pm \log \frac{\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]}$

- acidic pH basic . ,
$\mathrm{pH}=4.20, \quad[\mathrm{HA}]=[\mathrm{A}]$
$\mathrm{pH}<4.20,[\mathrm{HA}]>[\mathrm{A}]$
$\mathrm{pH}>4.20,[\mathrm{HA}]<[\mathrm{A}]$

At pH 8.0, base form A- predominates.

10-4: Which Is the Principal Species?

EXAMPLE Principal Species-Which One and How Much?

What is the predominant form of ammonia in a solution at pH 7.0 ? Approximately what fraction is in this form?

Solution In Appendix G, we find p $K_{\mathrm{a}}=9.24$ for the ammonium ion $\left(\mathrm{NH}_{4}^{+}\right.$, the conjugate acid of ammonia, $\left.\mathrm{NH}_{3}\right)$. At $\mathrm{pH}=9.24,\left[\mathrm{NH}_{4}^{+}\right]=\left[\mathrm{NH}_{3}\right]$. Below $\mathrm{pH} 9.24, \mathrm{NH}_{4}^{+}$will be the predominant form. Because $\mathrm{pH}=7.0$ is about 2 pH units below $\mathrm{p} K_{\mathrm{a}}$, the quotient $\left[\mathrm{NH}_{4}^{+}\right] /$ $\left[\mathrm{NH}_{3}\right]$ will be about $100: 1$. More than 99% is in the form NH_{4}^{+}.

TEST YOURSELF Approximately what fraction of ammonia is in the form NH_{3} at pH 11 ? (Answer: somewhat less than 99% because pH is almost 2 units above $\mathrm{p} K_{\mathrm{a}}$)

What is the principal form of alanine ($\mathrm{p} K_{\mathrm{a}} 2.34$ and 9.87) at pH 8 ? pH 8

The principal form of alanine pH 8 is the amphiprotic form, HA.

10-4: Which Is the Principal Species?

10-5: Fractional Composition Equations

We can derive equations that give the fraction of each species of acid or base at a given pH .

Monoprotic Systems:
$\alpha_{\mathrm{HA}}=\frac{[\mathrm{HA}]}{[\mathrm{F}]}=\frac{\left[\mathrm{H}^{+}\right]}{\left[\mathrm{H}^{+}\right]+\mathrm{K}_{\mathrm{a}}}$

$$
\alpha_{\mathrm{A}^{-}}=\frac{\left[\mathrm{A}^{-}\right]}{[\mathrm{F}]}=\frac{\mathrm{K}_{\mathrm{a}}}{\left[\mathrm{H}^{+}\right]+\mathrm{K}_{\mathrm{a}}}
$$

Example:
What fraction of benzoic acid exists as benzoate at pH 8.0 ?

$$
\alpha_{\mathrm{A}-}=\frac{\mathrm{K}_{\mathrm{a}}}{\left[\mathrm{H}^{+}\right]+\mathrm{K}_{\mathrm{a}}}=\frac{10^{-4.20}}{10^{-8.0}+10^{-4.20}}=0.9_{998} \quad \begin{aligned}
& \text { At pH 8.0, almost all of the } \\
& \text { benzoic acid exists in the } \\
& \text { basic form! }
\end{aligned}
$$

10-5: Fractional Composition Equations

- Fractional composition diagram of a monoprotic system with $\mathrm{p} K_{\mathrm{a}}=5.00$. Below pH 5, HA is the dominant form, whereas, above pH 5 , A-dominates

10-5: Fractional Composition Equations

Diprotic Systems:

$$
\alpha_{\mathrm{H}_{2} \mathrm{~A}}=\frac{\left[\mathrm{H}_{2} \mathrm{~A}\right]}{[\mathrm{F}]}=\frac{\left[\mathrm{H}^{+}\right]^{2}}{\left[\mathrm{H}^{+}\right]^{2}+\left[\mathrm{H}^{+}\right] \mathrm{K}_{1}+\mathrm{K}_{1} \mathrm{~K}_{2}}
$$

$$
\alpha_{\mathrm{HA}-}=\frac{\left[\mathrm{HA}^{-}\right]}{[\mathrm{F}]}=\frac{\mathrm{K}_{1}\left[\mathrm{H}^{+}\right]}{\left[\mathrm{H}^{+}\right]^{2}+\left[\mathrm{H}^{+}\right] \mathrm{K}_{1}+\mathrm{K}_{1} \mathrm{~K}_{2}}
$$

$$
\alpha_{\mathrm{A} 2-}=\frac{\left[\mathrm{A}^{2-}\right]}{[\mathrm{F}]}=\frac{\mathrm{K}_{1} \mathrm{~K}_{2}}{\left[\mathrm{H}^{+}\right]^{2}+\left[\mathrm{H}^{+}\right] \mathrm{K}_{1}+\mathrm{K}_{1} \mathrm{~K}_{2}}
$$

10-5: Fractional Composition Equations

10-6: Isoelectric and Isoionic pH

Alanine anion
A^{-}

10-6: Isoelectric and Isoionic pH

- The isoionic point (or isoionic pH):
- pH obtained when the pure, neutral polyprotic acid HA (the neutral zwitterion) is dissolved in water.
- The only ions are $\mathrm{H}_{2} \mathrm{~A}^{+}, \mathrm{A}^{-}, \mathrm{H}^{+}$, and OH^{-}.
- Most alanine is in the form HA, and the concentrations of $\mathrm{H}_{2} \mathrm{~A}^{+}$and A^{-}are not equal to each other.
- For neutral alanine, HA, dissolved in water, the pH would be somewhere between 2.234 and 9.87 . The [$\left.\mathrm{A}^{-}\right]$would be slightly larger than the $\left[\mathrm{H}_{2} \mathrm{~A}^{+}\right]$. This is the isoionic $\mathbf{p H}$.

$$
\left[\mathrm{H}^{+}\right]=\sqrt{\frac{\mathrm{K}_{\mathrm{a} 1} \mathrm{~K}_{\mathrm{a} 2} \mathrm{~F}+\mathrm{K}_{\mathrm{a} 1} \mathrm{~K}_{\mathrm{w}}}{\mathrm{~K}_{\mathrm{a} 1}+\mathrm{F}}}
$$

10-6: Isoelectric and Isoionic pH

- The isoelectric point (or isoelectric pH):
-pH at which the average charge of the polyprotic acid is 0 .
- Most of the molecules are in the uncharged form HA, and the concentrations of $\mathrm{H}_{2} \mathrm{~A}^{+}$and A^{-}are equal to each other.

$$
\left[\mathrm{H}_{2} \mathrm{~A}^{+}\right]=\left[\mathrm{A}^{-}\right]
$$

- If a pure sample of neutral alanine ($\mathrm{p} K_{1} 2.34, \mathrm{p} K_{2} 9.87$) is dissolved in water, the $\left[\mathrm{A}^{-}\right]$would be slightly larger than the $\left[\mathrm{H}_{2} \mathrm{~A}^{+}\right]$.
- By adding a small amount of acid, some A^{-}would be converted to $\mathrm{H}_{2} \mathrm{~A}^{+}$until the concentrations are equal. This is the isoelectric pH .

$$
\mathrm{pH}=1 / 2\left(\mathrm{p} K_{\mathrm{a} 1}+\mathrm{p} K_{\mathrm{a} 2}\right)
$$

- Can be used to separate proteins from one another.

10-3: Polyprotic Acids and Bases

Example: A triprotic System, page 221 (9th Edition)

- Find the pH of $0.10 \mathrm{M} \mathrm{H}_{3} \mathrm{His}^{2+}$, $0.10 \mathrm{M} \mathrm{H}_{2} \mathrm{His}^{+}, 0.10 \mathrm{M} \mathrm{HHis}$, and $0.10 \mathrm{M} \mathrm{His}^{+}$, where His stands for the amino acid histidine.

1. $H_{3} A$ is treated as monoprotic acid, with $k a=k_{1}$.
2. $\mathrm{H}_{2} \mathrm{~A}^{-}$is tretaed as the intermediate form of a diprotic acid :

$$
\left[H^{+}\right]=\sqrt{\frac{\mathrm{K}_{\mathrm{a} 1} \mathrm{~K}_{\mathrm{a} 2} \mathrm{~F}+\mathrm{K}_{\mathrm{a} 1} \mathrm{~K}_{\mathrm{w}}}{\mathrm{~K}_{\mathrm{a} 1}+\mathrm{F}}}
$$

$$
\mathrm{pH} \approx 1 / 2\left(\mathrm{p} K_{\mathrm{a} 1}+\mathrm{p} K_{\mathrm{a} 2}\right)
$$

10-3: Polyprotic Acids and Bases

3. HA^{2-} is treated as the intermediate form of a diprotic acid. However, HA^{2-} is "surrounded" by $\mathrm{H}_{2} \mathrm{~A}^{-}$and A^{3-}, so the equilibrium constants to use are K_{2} and K_{3}, instead of K_{1} and K_{2} :

$$
\begin{aligned}
{[\mathrm{H}+] } & =\left[\left(K_{2} K_{3} F+K_{2} K_{w}\right) /\left(K_{1}+F\right)\right]^{1 / 2} \\
\mathrm{pH} & \approx 1 / 2\left(\mathrm{p} K_{\mathrm{a} 2}+\mathrm{p} K_{\mathrm{a} 3}\right)
\end{aligned}
$$

4. A^{3-} is treated as monobasic, with $\mathrm{K}_{\mathrm{b}}=\mathrm{K}_{\mathrm{b} 1}=\mathrm{K}_{\mathrm{w}} / \mathrm{K}_{\mathrm{a} 3}$

[^0]: 1 The acidic protons are shown in bold type Each amins acid is writion is its fully protanated form. Standard abbraviations are shown in parenthesen
 c. Far these entries, the ionic strength io 0.1 M , and the constant refers to a product of coscentrations instead of activities.

