## Chapter 10 in the 9<sup>th</sup> Edition Chapter 9 in the 8<sup>the</sup> Edition

## **Polyprotic Acid-Base Equilibria**

## **Overview**

- 10-1 Diprotic Acids and Bases
- 10-2 Diprotic Buffers
- 10-3 Polyprotic Acids and Bases
- 10-4 Which Is the Principal Species?
- 10-5 Fractional Composition Equations
- 10-6 Isoelectric and Isoionic pH

Solutions of weak acids and bases

## Example:

Propanoic acid (CH<sub>3</sub>CH<sub>2</sub>COOH, which we simplify as HPr) is a carboxylic acid whose salts are used to retard mold growth in food products. What is the [H<sub>3</sub>O<sup>+</sup>] of 0.10 *M* HPr ( $K_a = 1.3 \times 10^{-5}$ )?

$$HPr(aq) + H_2O(l) \implies H_3O^+(aq) + Pr^-(aq)$$

$$K_{a} = [H_{3}O^{+}][Pr^{-}]$$
[HPr]

| Concentration (M) | HPr( <i>aq</i> ) | + $H_2O(1)$ | H <sub>3</sub> O+( | <i>aq</i> ) + Pr⁻(a | aq) |
|-------------------|------------------|-------------|--------------------|---------------------|-----|
| Initial           | 0.10             | -           | 0                  | 0                   |     |
| Change            | - <i>x</i>       | -           | + <i>X</i>         | + <i>X</i>          |     |
| Equilibrium       | 0.10 - <i>x</i>  | -           | X                  | X                   |     |

Since  $K_a$  is small, we will assume that  $x \ll 0.10$  and [HPr]  $\approx 0.10 M$ .

 $\mathcal{K}_{a} = 1.3 \times 10^{-5} = \frac{[H_{3}O^{+}][Pr^{-}]}{[HPr]} = \frac{x^{2}}{0.10}$   $x = \sqrt{(0.10)(1.3 \times 10^{-5})} = 1.1 \times 10^{-3} M = [H_{3}O^{+}] \text{ pH} = -\log [H_{3}O^{+}] = 2.96$ Check:  $[HPr]_{diss} = \frac{1.1 \times 10^{-3} M}{0.10 M} \times 100 = 1.1\% \ (< 5\%; \text{ assumption is justified.})$ 

Error Introduced by Assuming  $\rm H_{3}O^{+}$  Concentration Is Small Relative to  $c_{\rm HA}$  in Equation 9-16

| $K_{ m a}$            | c <sub>HA</sub>       | [H <sub>3</sub> O <sup>+</sup> ] Using<br>Assumption | $rac{c_{ m HA}}{K_{ m a}}$ | [H <sub>3</sub> O <sup>+</sup> ] Using More<br>Exact Equation | Percent<br>Error |
|-----------------------|-----------------------|------------------------------------------------------|-----------------------------|---------------------------------------------------------------|------------------|
| $1.00 \times 10^{-2}$ | $1.00 \times 10^{-3}$ | $3.16 \times 10^{-3}$                                | $10^{-1}$                   | $0.92 \times 10^{-3}$                                         | 244              |
|                       | $1.00 \times 10^{-2}$ | $1.00 \times 10^{-2}$                                | $10^{0}$                    | $0.62 \times 10^{-2}$                                         | 61               |
|                       | $1.00 \times 10^{-1}$ | $3.16 \times 10^{-2}$                                | $10^{1}$                    | $2.70 \times 10^{-2}$                                         | 17               |
| $1.00 \times 10^{-4}$ | $1.00 \times 10^{-4}$ | $1.00 \times 10^{-4}$                                | $10^{0}$                    | $0.62 \times 10^{-4}$                                         | 61               |
|                       | $1.00 \times 10^{-3}$ | $3.16 	imes 10^{-4}$                                 | $10^{1}$                    | $2.70 \times 10^{-4}$                                         | 17               |
|                       | $1.00 \times 10^{-2}$ | $1.00 \times 10^{-3}$                                | $10^{2}$                    | $0.95 \times 10^{-3}$                                         | 5.3              |
|                       | $1.00 \times 10^{-1}$ | $3.16 \times 10^{-3}$                                | $10^{3}$                    | $3.11 \times 10^{-3}$                                         | 1.6              |
| $1.00 \times 10^{-6}$ | $1.00 \times 10^{-5}$ | $3.16 \times 10^{-6}$                                | $10^{1}$                    | $2.70 \times 10^{-6}$                                         | 17               |
|                       | $1.00 \times 10^{-4}$ | $1.00 \times 10^{-5}$                                | $10^{2}$                    | $0.95 \times 10^{-5}$                                         | 5.3              |
|                       | $1.00 \times 10^{-3}$ | $3.16 \times 10^{-5}$                                | $10^{3}$                    | $3.11 \times 10^{-5}$                                         | 1.6              |
|                       | $1.00 \times 10^{-2}$ | $1.00 \times 10^{-4}$                                | $10^{4}$                    | $9.95 \times 10^{-5}$                                         | 0.5              |
|                       | $1.00 \times 10^{-1}$ | $3.16 \times 10^{-4}$                                | 10 <sup>5</sup>             | $3.16 \times 10^{-4}$                                         | 0.0              |



Relative error resulting from the assumption that  $[H_3O^+] \ll c_{HA}$ 

## 10-1: Diprotic Acids and Bases

- **Polyprotic acids and bases** are those that can donate or accept more than one proton.
- **Diprotic acids and bases** therefore can either donate or accept two protons.

Types of polyprotic acids

- **1.**  $H_2B^+$ , Amino acids, Example: Alanine  $H_2A^+$ Neutrally charged acids
- **2.**  $H_2A$  Example:  $H_2SO_4$ ,  $H_2CO_3$ ,  $H_2C_2O_4$
- **3.**  $H_3A$  Example:  $H_3PO_4$

## **10-1: Diprotic Acids and Bases**

- A common class of diprotic acids are **amino acids**, which are the building blocks of proteins.
- They have an acidic carboxylic acid group, a basic amino group, and a variable substituent designated R.
- The carboxyl group is a stronger acid than the ammonium group, so the nonionized form rearranges spontaneously to the **zwitterion**, which has both positive and negative sites.



### **Substituent**



## **10-1: Diprotic Acids and Bases**

| TABLE 10-1 Acid dis     | ssociation constants of amino acids                                              |                                                 |                                          |                                             |                 |
|-------------------------|----------------------------------------------------------------------------------|-------------------------------------------------|------------------------------------------|---------------------------------------------|-----------------|
| Amino acid <sup>a</sup> | Substituent <sup>a</sup>                                                         | Carboxylic acid <sup>b</sup><br>pK <sub>a</sub> | Ammonium <sup>∂</sup><br>pK <sub>a</sub> | Substituent <sup>b</sup><br>pK <sub>a</sub> | Formula<br>mass |
| Alanine (A)             | CH <sub>3</sub>                                                                  | 2.344                                           | 9.868                                    |                                             | 89.09           |
|                         | <sup>+</sup> NH <sub>2</sub>                                                     |                                                 |                                          |                                             |                 |
| Arginine (R)            | -CH2CH2CH2NHC                                                                    | 1.823                                           | 8.991                                    | (12.1°)                                     | 174.20          |
|                         | 0                                                                                |                                                 |                                          |                                             |                 |
| Asparagine (N)          | - CH <sub>2</sub> CNH <sub>2</sub>                                               | 2.16 <sup>c</sup>                               | 8.73 <sup>c</sup>                        |                                             | 132.12          |
| Aspartic acid (D)       | CH <sub>2</sub> CO <sub>2</sub> H                                                | 1.990                                           | 10.002                                   | 3,900                                       | 133.10          |
| Cysteine (C)            | -CH <sub>2</sub> SH                                                              | (1.7)                                           | 10.74                                    | 8.36                                        | 121.16          |
| Glutamic acid (E)       | -CH <sub>2</sub> CH <sub>2</sub> CO <sub>2</sub> H                               | 2.16                                            | 9.96                                     | 4.30                                        | 147.13          |
|                         | Ö                                                                                |                                                 |                                          |                                             |                 |
| Glutamine (O)           | -CH-CH-CNH-                                                                      | 2 10 <sup>c</sup>                               | 9.00 <sup>c</sup>                        |                                             | 146.15          |
| Glycine (G)             | H                                                                                | 2.350                                           | 9.00                                     |                                             | 75.07           |
| Cilyenie (C)            |                                                                                  | 2.000                                           | 2.110                                    |                                             | 12.01           |
| Histidine (H)           | -CH2-                                                                            | (1.6)                                           | 9.28                                     | 5.97                                        | 155.16          |
|                         | N                                                                                |                                                 |                                          |                                             |                 |
| Isoleucine (I)          |                                                                                  | 2.318                                           | 9.758                                    |                                             | 131.17          |
| Leucine (L)             | -CH <sub>2</sub> CH(CH <sub>2</sub> ) <sub>2</sub>                               | 2.328                                           | 9.744                                    |                                             | 131.17          |
| Lysine (K)              | -CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> NH <sup>+</sup> | (1.77)                                          | 9.07                                     | 10.82                                       | 146.19          |
| Methionine (M)          | -CH <sub>2</sub> CH <sub>2</sub> SCH <sub>3</sub>                                | 2.18 <sup>c</sup>                               | 9.08 <sup>c</sup>                        |                                             | 149.21          |
| Phanylalanina (E)       |                                                                                  | 2.20                                            | 0.31                                     |                                             | 165.10          |
| Filenylaiannie (F)      |                                                                                  | 2.20                                            | 9.51                                     |                                             | 105.19          |
| Dealing (D)             | H <sub>2</sub> N Structure                                                       | 1.052                                           | 10.640                                   |                                             | 115.12          |
| Fronne (F)              | uo c ↓ ← of entire                                                               | 1.952                                           | 10.040                                   |                                             | 115.15          |
| 0 . (0)                 | nO <sub>2</sub> C * amino acid                                                   | 0.197                                           | 0.200                                    |                                             | 105.00          |
| Serine (S)              | -CH <sub>2</sub> OH                                                              | 2.187                                           | 9.209                                    |                                             | 105.09          |
| Inreonine (1)           |                                                                                  | 2.088                                           | 9.100                                    |                                             | 119.12          |
|                         | -CH2                                                                             |                                                 |                                          |                                             |                 |
| Tryptophan (W)          | $( \Box O )$                                                                     | 2.37 <sup>c</sup>                               | 9.33 <sup>c</sup>                        |                                             | 204.23          |
|                         | H                                                                                |                                                 |                                          |                                             |                 |
| m : an                  |                                                                                  | 2.44                                            | 0.070                                    |                                             | 101.10          |
| Tyrosine (Y)            |                                                                                  | 2.41                                            | 8.67                                     | 11.01                                       | 181.19          |
| Valine (V)              | CH(CH <sub>3</sub> ) <sub>2</sub>                                                | 2.286                                           | 9.719                                    |                                             | 117.15          |

a. The acidic protons are shown in **bold** type. Each amino acid is written in its fally protonated form. Standard abbreviations are shown in parentheses.

b. pKa values refer to 25°C and zero ionic strength unless marked by c. Values considered to be uncertain are enclosed in parentheses. Appendix G gives pKa for  $\mu = 0.1$  M.

c. For these entries, the ionic strength is 0.1 M, and the constant refers to a product of concentrations instead of activities.

## **10-1: Diprotic Acids and Bases**



$$\begin{aligned} \mathbf{H_2L^+} + \mathbf{H_2O} &\rightleftharpoons \mathbf{H_3O^+} + \mathbf{HL} \quad \mathbf{K_{a1}} = 4.70 \times 10^{-3} \\ \mathbf{HL} + \mathbf{H_2O} &\rightleftharpoons \mathbf{H_3O^+} + \mathbf{L^-} \quad \mathbf{K_{a2}} = 1.80 \times 10^{-10} \end{aligned}$$

## HL is a Zwitterion.



Calculate the pH of the following 0.050 M aqueous solutions:

- 1

HL

- 1. Leucine hydrochloride  $H_2L^+$
- 2. Sodium leucinate
- 3. Leucine

 $pK_a$ 's = 2.328 and 9.744

- (1) Estimate answer
- (2) Calculate it!

1. Calculating the pH of weak diprotic acids ( $H_2L^+$ )  $H_2LCI \rightarrow H_2L^+ + CI^-$ 

- The weak acid H<sub>2</sub>L<sup>+</sup> dissociates only a little and the even weaker acid HL dissociates hardly at all.
- Treat as a monoprotic acid.
- For the reaction H<sub>2</sub>L<sup>+</sup> ⇒ H<sup>+</sup> + HL, we set up and solve the equation

$$\frac{[H^+][HL]}{[H_2L^+]} = \frac{x^2}{F - x} = K_{a1}$$

where  $[H^+] = [HL] = x$ , and  $[H_2L^+] = F - x$ .

1. Calculating the pH of weak diprotic acids  $(H_2L^+)$  $H_2L^+ \Rightarrow H^+ + HL$ ,  $pK_{a1} = 2.328$   $(K_{a1} \ge 100K_{a2})$ 

We estimate the pH to be less than 2.328.

$$\frac{[\mathrm{H^+}][\mathrm{HL}]}{[\mathrm{H}_2\mathrm{L^+}]} = \frac{x^2}{\mathrm{F} - x} = \mathrm{K}_{a1}$$
$$\frac{x^2}{0.050 \mathrm{M} - x} = 10^{-2.328} = 4.70 \times 10^{-3} \quad \text{(solve using quadratic equation)}$$

 $x = 1.32 \times 10^{-2} M$ pH = 1.88

2. Sodium leucinate (L<sup>-</sup>)

 $\mathbf{L}^{-} + \mathbf{H}_{2}\mathbf{O} \rightleftharpoons \mathbf{H}\mathbf{L} + \mathbf{O}\mathbf{H}^{-} \qquad \mathbf{K}_{b1} = \frac{\mathbf{K}_{w}}{\mathbf{K}_{a2}} = 5.55 \times 10^{-5}$  $\mathbf{H}\mathbf{L} + \mathbf{H}_{2}\mathbf{O} \rightleftharpoons \mathbf{H}_{2}\mathbf{L}^{+} + \mathbf{O}\mathbf{H}^{-} \qquad \mathbf{K}_{b2} = \frac{\mathbf{K}_{w}}{\mathbf{K}_{a1}} = 2.13 \times 10^{-12}$ 



2. Calculating the pH of weak diprotic bases (L<sup>-</sup>)

- The weak base L<sup>-</sup> ionizes by hydrolysis only a little and the even weaker base HL ionizes hardly at all.
- Therefore, treat L<sup>-</sup> as a **monoprotic base**.
- For the reaction  $L^- + H_2O \Rightarrow HL + OH^-$ , we set up and solve the equation

$$\frac{[\text{HL}][\text{OH}^-]}{[\text{L}^-]} = \frac{x^2}{\text{F} - x} = \text{K}_{\text{b1}}$$

where  $[OH^{-}] = [HL] = x$ , and  $[L^{-}] = F - x$ .

What is the pH of an aqueous 0.050 M sodium leucinate solution? NaL  $\rightarrow$  Na<sup>+</sup> + L<sup>-</sup>

 $L^{-} + H_2O \Rightarrow HL + OH^{-}, K_{b1} = 5.55 \times 10^{-5} (K_{b1} \ge 100K_{b2})$ 

$$\frac{[OH^{-}][HL]}{[L^{-}]} = \frac{x^2}{F - x} = K_{b1}$$

 $\frac{x^2}{0.050 \text{ M}-x} = 5.55 \times 10^{-5} \quad \text{(solve using quadratic equation)}$ 

 $x = 1.6_4 \times 10^{-3} \text{ M} = [\text{OH}^-]$ pOH = 2.78<sub>6</sub>; pH = 14.00 – pOH; pH = 11.21

A molecule that can both donate and accept a proton is said to be **amphiprotic.** 



Using the systematic treatment of equilibrium, an equation for calculating the [H<sup>+</sup>] of amphiprotics can be derived (see text).

$$[H^{+}] = \sqrt{\frac{K_{a1}K_{a2}F + K_{a1}K_{w}}{K_{a1} + F}}$$

$$pH \sim \frac{1}{2} (pK_{a1} + pK_{a2})$$

### What is the pH of a 0.05 M leucine (HL) solution?

$$[\mathbf{H}^{+}] = \sqrt{\frac{(4.7 \times 10^{-3})(1.8 \times 10^{-10})(0.050) + (4.7 \times 10^{-3})(1.0 \times 10^{-14})}{4.7 \times 10^{-3} + 0.050}} = 8.7_{9} \times 10^{-7} \,\mathrm{M}$$

### $pH = -Log(8.79 \times 10^{-7} M) = 6.06$

$$pH \sim \frac{1}{2} (pK_{a1} + pK_{a2}) \sim \frac{1}{2} (2.328 + 9.744) \sim 6.04_{22}$$

## Calculating pH

| $H_{2}L^{+} \text{ or } H_{2}A$ $H_{2}A + HA^{-} (H_{2}L^{+} + HL)$ and $K_{a1} \ge 100K_{a2}$ | monoprotic acid                                                   |
|------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|
| L⁻ (K <sub>b1</sub> ≥ 100K <sub>b2</sub> )                                                     | Monoprotic base hydrolysis                                        |
| HL or HA <sup>-</sup>                                                                          | $[H^{+}] = \sqrt{\frac{K_{a1}K_{a2}F + K_{a1}K_{w}}{K_{a1} + F}}$ |
|                                                                                                | $pH \sim \frac{1}{2}(pK_{a1} + pK_{a2})$                          |
| HA <sup>-</sup> + A <sup>2-</sup>                                                              | The pH is calculated using $K_{a2}$                               |
| K <sub>a1</sub> ≥ 100K <sub>a2</sub>                                                           |                                                                   |

Solutions of Polyprotic acids

$$H_{2}A \leftrightarrow H^{+} + HA^{-} \qquad K_{1} = \frac{[H^{+}][HA^{-}]}{[H_{2}A]}$$
$$HA^{-} \leftrightarrow H^{+} + A^{2-} \qquad K_{2} = \frac{[H^{+}][A^{2-}]}{[HA^{-}]}$$

1. A solution containing  $H_2A$ , or  $H_2A+HA^-$ 

If  $K_1$  is a hundred times or so greater than  $K_2$ , the second ionization constant will have very little effect and can be ignored. The pH of the solution is calculated from  $K_1$  expression.

2. A solution containing HA-: Here both ionization affect the composition of the solution and must be considered.

 $pH = (pK_1 + pK_2) / 2$ 

3. A solution containing  $HA^{-} + A^{2-}$ : If  $K_1$  100 times or more greater than  $K_2$ , there will be very little  $H_2A$  in the solution at equilibrium and the first ionization constant need not be used. The pH is calculated using  $K_2$ . 24 1. Example: Calculate the pH of a 0.15M solution of malonic acid,  $CH_2(COOH)_2$ . The ionization constants for malonic acids are,  $K_{a1} = 1.40 \times 10^{-3}$ , and  $K_{a2} = 2.2 \times 10^{-6}$ .

$$K_{a1} = \frac{[H^+][HA^-]}{[H_2A]}$$

$$K_{a1} = \frac{[H^+]^2}{0.15 - [H^+]}$$

Solving this equation by the quadratic formula:

$$[H^+] = 1.38 \text{ X } 10^{-2} \text{ M}$$
  
 $pH = 1.86$ 

2. Example: Calculate the pH of a solution of sodium hydrogen malonate. The ionization constants for malonic acid are  $pK_{a1} = 2.85$ ,  $pK_{a2} = 5.66$ 

pH = (2.85 + 5.66) / 2 = 4.26

**3.** Example: Calculate the pH of a solution having, at equilibrium a hydrogen malonate ion (HA<sup>-</sup>) concentration of 0.15M and a malonate ion  $A^{-2}$  concentration of 0.05M.

$$K_{a2} = \frac{[H^+][A^{2-}]}{[HA^-]} = 2.2 \times 10^{-6} = \frac{[H^+](0.05)}{(0.15)}$$

$$pH= 5.18$$

Calculate the pH of the following 0.10 M aqueous solutions:

- 1. Alanine chloride
- 2. Alanine
- 3. Sodium alanate

 $pK_a$ 's = 2.34 and 9.87

- (1) Estimate answer
- (2) Calculate it!

# Calculate the pH of the following 0.10 M aqueous solutions:

| Name                | Form                      | Strategy           | Calculated<br>pH |
|---------------------|---------------------------|--------------------|------------------|
| Alanine<br>chloride | H <sub>2</sub> <b>A</b> + | Monoprotic<br>acid | 1.71             |
| Alanine             | HA                        | Amphiprotic        | 6.11             |
| Sodium<br>alanate   | <b>A</b> -                | Monoprotic<br>base | 11.44            |

## **Describe** how you would calculate the pH of the following 0.10 M aqueous solutions:

- sodium monohydrogen phosphate: Na<sub>2</sub>HPO<sub>4</sub>
- glycine hydrochloride: H<sub>2</sub>G<sup>+</sup>.Cl<sup>-</sup>

## **Describe** how you would calculate the pH of the following 0.10 M aqueous solutions:

### Solution:

| Chemical Formula                               | Acid or base<br>form                                       | Strategy                                       |
|------------------------------------------------|------------------------------------------------------------|------------------------------------------------|
| Na <sub>2</sub> HPO <sub>4</sub>               | HPO <sub>4</sub> <sup>2-</sup>                             | amphiprotic, K <sub>a2</sub> , K <sub>a3</sub> |
| H <sub>2</sub> GCI or HG · HCI                 | $H_2G^+$                                                   | monoprotic acid, K <sub>a1</sub>               |
| $H_3C_6H_5O_7$                                 | $H_3C_6H_5O_7$                                             | monoprotic acid, K <sub>a1</sub>               |
| $Na_3C_6H_5O_7$                                | C <sub>6</sub> H <sub>5</sub> O <sub>7</sub> <sup>3-</sup> | monoprotic base, K <sub>b1</sub>               |
| KHC <sub>8</sub> H <sub>4</sub> O <sub>4</sub> | HC <sub>8</sub> H <sub>4</sub> O <sub>4</sub> -            | amphiprotic, K <sub>a1</sub> , K <sub>a2</sub> |

- A buffer made from a diprotic (or polyprotic) acid is treated in the same way as a buffer made from a monoprotic acid.
- For the acid H<sub>2</sub>A, we can write *two* Henderson-Hasselbalch equations, both of which are **always** true.
- If we know [H<sub>2</sub>A] and [HA<sup>-</sup>], then use the pK<sub>1</sub> equation. If we know [HA<sup>-</sup>] and [A<sup>2-</sup>], use the pK<sub>2</sub> equation.

$$H_2A \rightleftharpoons HA^- + H^+ pK_1$$
$$HA^- \rightleftharpoons A^{2-} + H^+ pK_2$$

$$pH = pK_1 \pm Log \frac{[HA^-]}{[H_2A]}$$
  $pH = pK_2 \pm Log \frac{[A^{2-}]}{[HA^-]}$ 

### Example: A Diprotic Buffer System

 Find the pH of a solution prepared by dissolving 1.00 g of potassium hydrogen phthalate and 1.20 g of disodium phthalate in 50.0 mL of water.

#### EXAMPLE A Diprotic Buffer System

Find the pH of a solution prepared by dissolving 1.00 g of potassium hydrogen phthalate and 1.20 g of disodium phthalate in 50.0 mL of water.

**Solution** Monohydrogen phthalate and phthalate were shown in the preceding example. The formula masses are KHP =  $C_8H_5O_4K = 204.221$  and Na  $_2P = C_8H_4O_4Na_2 = 210.094$ . We know [HP<sup>-</sup>] and [P<sup>2-</sup>], so we use the p $K_2$  Henderson-Hasselbalch equation to find the pH:

$$pH = pK_2 + \log \frac{[P^{2^-}]}{[HP^-]} = 5.408 + \log \frac{(1.20 \text{ g})/(210.094 \text{ g/mol})}{(1.00 \text{ g})/(204.221 \text{ g/mol})} = 5.47$$

 $K_2$  is the acid dissociation constant of HP -, which appears in the denominator of the log term. Notice that the volume of solution was not used to answer the question.

**TEST YOURSELF** Find the pH with 1.50 g Na<sub>2</sub>P instead of 1.20 g. (*Answer:* 5.57)

## 10-3: Polyprotic Acids and Bases

### Example: A diprotic System

EXAMPLE Preparing a Buffer in a Diprotic System How many milliliters of 0.800 M KOH should be added to 3.38 g of oxalic acid to give a pH of 4.40 when diluted to 500 mL? 00 HOCCOH  $pK_1 = 1.250$  $pK_2 = 4.266$ Oxalic acid  $(H_2O_X)$ Formula mass - 90.035 **Solution** The desired pH is above p  $K_2$ . We know that a 1:1 mole ratio of HOx  $= : Ox^2$ would have  $pH = pK_2 = 4.266$ . If the pH is to be 4.40, there must be more Ox <sup>2-</sup> than HOx present. We must add enough base to convert all H 20x into HOx , plus enough additional base to convert the right amount of HOx - into Ox2-.  $H_2Ox + OH^- \rightarrow HOx^- + H_2O$ ↑  $pH \approx \frac{1}{2}(pK_1 + pK_2) = 2.76$  $HOx^- + OH^- \rightarrow Ox^{2-} + H_2O$ A 1:1 mixture would have  $pH = pK_2 = 4.266$ 

## **10-3: Polyprotic Acids and Bases**

### Example: A diprotic System

In 3.38 g of H <sub>2</sub>Ox, there are 0.037 5 <sub>4</sub> mol. The volume of 0.800 M KOH needed to react with this much H<sub>2</sub>Ox to make HOx<sup>-</sup> is  $(0.037 5_4 \text{ mol})/(0.800 \text{ M}) = 46.9_3 \text{ mL}$ .

To produce a pH of 4.40 requires an additional x mol of OH -:

|               | HOx <sup>-</sup>         | + OH - | $\rightarrow \mathrm{Ox}$ | 2- |
|---------------|--------------------------|--------|---------------------------|----|
| Initial moles | 0.037 54                 | х      |                           |    |
| Final moles   | 0.037 5 <sub>4</sub> - x |        |                           | x  |

$$pH = pK_2 + \log \frac{[Ox^{2^-}]}{[HOx^-]}$$
$$4.40 = 4.266 + \log \frac{x}{0.0375_4 - x} \Rightarrow x = 0.0216_6 \text{ mol}$$

The volume of KOH needed to deliver 0.021  $6_6$  mole is (0.021  $6_4$  mol)/(0.800 M) = 27.0<sub>5</sub> mL. The total volume of KOH needed to bring the pH to 4.40 is 46.9  $_3$  + 27.0<sub>5</sub> = 73.9<sub>8</sub> mL.

TEST YOURSELF What volume of KOH would bring the pH to 4.50? (Answer: 76.56 mL)

## 10-4: Which Is the Principal Species?

What is the principal form of benzoic acid ( $pK_a$  4.20) at pH 8?

From the Henderson-Hasselbalch equation:

pH = p
$$K_a \pm Log \frac{[A^-]}{[HA]}$$
 pH = 4.20 ± Log  $\frac{[A^-]}{[HA]}$ 

 $pH = 4.20, [HA] = [A^-]$  $pH < 4.20, [HA] > [A^-]$  $pH > 4.20, [HA] < [A^-]$ 



At pH 8.0, base form A<sup>-</sup> predominates.

#### **EXAMPLE** Principal Species—Which One and How Much?

What is the predominant form of ammonia in a solution at pH 7.0? Approximately what fraction is in this form?

**Solution** In Appendix G, we find  $pK_a = 9.24$  for the ammonium ion (NH<sup>+</sup><sub>4</sub>, the conjugate acid of ammonia, NH<sub>3</sub>). At pH = 9.24, [NH<sup>+</sup><sub>4</sub>] = [NH<sub>3</sub>]. Below pH 9.24, NH<sup>+</sup><sub>4</sub> will be the predominant form. Because pH = 7.0 is about 2 pH units below p  $K_a$ , the quotient [NH<sup>+</sup><sub>4</sub>]/ [NH<sub>3</sub>] will be about 100:1. More than 99% is in the form NH<sup>+</sup><sub>4</sub>.

**TEST YOURSELF** Approximately what fraction of ammonia is in the form NH  $_3$  at pH 11? (*Answer:* somewhat less than 99% because pH is almost 2 units above p  $K_a$ )



The principal form of alanine pH 8 is the amphiprotic form, HA.

## 10-4: Which Is the Principal Species?



We can derive equations that give the fraction of each species of acid or base at a given pH.

Monoprotic Systems:

$$\alpha_{HA} = \frac{[HA]}{[F]} = \frac{[H^+]}{[H^+] + K_a} \qquad \qquad \alpha_{A-} = \frac{[A^-]}{[F]} = \frac{K_a}{[H^+] + K_a}$$

### Example:

What fraction of benzoic acid exists as benzoate at pH 8.0?

$$\alpha_{A-} = \frac{K_a}{[H^+] + K_a} = \frac{10^{-4.20}}{10^{-8.0} + 10^{-4.20}} = 0.9_{998}$$

At pH 8.0, almost all of the benzoic acid exists in the basic form! <sup>39</sup>



• Fractional composition diagram of a monoprotic system with  $pK_a = 5.00$ . Below pH 5, HA is the dominant form, whereas, above pH 5, A- dominates

### **Diprotic Systems:**

$$\alpha_{H_{2}A} = \frac{\left[H_{2}A\right]}{\left[F\right]} = \frac{\left[H^{+}\right]^{2}}{\left[H^{+}\right]^{2} + \left[H^{+}\right]K_{1} + K_{1}K_{2}}$$

$$\alpha_{HA^{-}} = \frac{\left[HA^{-}\right]}{\left[F\right]} = \frac{K_{1}[H^{+}]}{\left[H^{+}\right]^{2} + \left[H^{+}\right]K_{1} + K_{1}K_{2}}$$

$$\alpha_{A2^{-}} = \frac{\left[A^{2^{-}}\right]}{\left[F\right]} = \frac{K_1 K_2}{\left[H^{+}\right]^2 + \left[H^{+}\right] K_1 + K_1 K_2}$$



## 10-6: Isoelectric and Isoionic pH



## 10-6: Isoelectric and Isoionic pH

- The **isoionic point** (or isoionic pH):
  - pH obtained when the pure, neutral polyprotic acid HA (the neutral zwitterion) is dissolved in water.
  - The only ions are  $H_2A^+$ ,  $A^-$ ,  $H^+$ , and  $OH^-$ .
  - Most alanine is in the form HA, and the concentrations of  $H_2A^+$  and  $A^-$  are *not* equal to each other.
  - For neutral alanine, HA, dissolved in water, the pH would be somewhere between 2.234 and 9.87. The [A<sup>-</sup>] would be slightly larger than the [H<sub>2</sub>A<sup>+</sup>]. This is the **isoionic pH**.

$$[H^{+}] = \sqrt{\frac{K_{a1}K_{a2}F + K_{a1}K_{w}}{K_{a1} + F}}$$

## 10-6: Isoelectric and Isoionic pH

- The **isoelectric point** (or isoelectric pH):
  - pH at which the **average charge** of the polyprotic acid is 0.
  - Most of the molecules are in the uncharged form HA, and the concentrations of  $H_2A^+$  and  $A^-$  *are* equal to each other.

 $[H_2A^+] = [A^-]$ 

- If a pure sample of neutral alanine (pK<sub>1</sub> 2.34, pK<sub>2</sub> 9.87) is dissolved in water, the [A<sup>-</sup>] would be slightly larger than the [H<sub>2</sub>A<sup>+</sup>].
- By adding a small amount of acid, some A<sup>-</sup> would be converted to H<sub>2</sub>A<sup>+</sup> until the concentrations are equal. This is the isoelectric pH.  $pH = \frac{1}{2} (pK_{a1} + pK_{a2})$
- Can be used to separate proteins from one another.

## **10-3: Polyprotic Acids and Bases**

Example: A triprotic System, page 221 (9<sup>th</sup> Edition)

- Find the pH of 0.10 M H<sub>3</sub>His<sup>2+</sup>, 0.10 M H<sub>2</sub>His<sup>+</sup>, 0.10 M HHis, and 0.10 M His<sup>+</sup>, where His stands for the amino acid histidine.
- 1.  $H_3A$  is treated as monoprotic acid, with ka =  $k_1$ .
- 2.  $H_2A^2$  is tretaed as the intermediate form of a diprotic acid :

$$[H^{+}] = \sqrt{\frac{K_{a1}K_{a2}F + K_{a1}K_{w}}{K_{a1} + F}}$$

$$\mathsf{pH} \approx \frac{1}{2} \left( \mathsf{p} K_{\mathsf{a}1} + \mathsf{p} K_{\mathsf{a}2} \right)$$

## **10-3: Polyprotic Acids and Bases**

3. HA<sup>2-</sup> is treated as the intermediate form of a diprotic acid. However, HA<sup>2-</sup> is "surrounded" by H<sub>2</sub>A<sup>-</sup> and A<sup>3-</sup>, so the equilibrium constants to use are  $K_2$  and  $K_3$ , instead of  $K_1$ and  $K_2$ :

$$[H+] = [(K_2K_3F + K_2K_w)/(K_1 + F)]^{1/2}$$
$$pH \approx \frac{1}{2} (pK_{a2} + pK_{a3})$$

**4.**  $A^{3-}$  is treated as monobasic, with  $K_b = K_{b1} = K_w/K_{a3}$